
A fact approach to automatic application development

Elton Manoku1, Jan Pieter Zwart2, Guido Bakema2

1Freelance IS consultant
1emanoku@gmail.com. Tel: +355-69-20-81-566, Tirana, Albania

1,2Research and Competence Group Data Architectures & Metadata Management
1,2Informatics and Communication Academy, HAN University of Applied Science

1,2Beverweerdlaan 3, 6825AE Arnhem, The Netherlands
1,2Phone: +31-26-3658271. Fax: +31-26-3658126
2janpieter.zwart@han.nl, guido.bakema@han.nl

Abstract. This paper presents an architecture for defining models for applica-
tion generation from the fact oriented point of view. We explain how to gener-
ate application components such as user interface parts, the database and the
transactions. This requires a data use model that contains pragmatic aspects of
the UoD, in addition to the usual data structure model, which contains the se-
mantics of the UoD. The single point of definition of these models simplifies
their validation by the domain expert and ensures their mutual correctness dur-
ing the entire development phase. The infrastructure was implemented in a pro-
totype tool, which supports the creation of the application metadata and gener-
ates the application components. This prototype tool has an open repository.
We are using it for further research in this area as well.

Keywords: Information Modeling, Data Modeling, Application generation, fact
oriented approach

1 Introduction

Organizations try to adapt to fast changes in the market to survive the competition.
The information systems they rely on therefore frequently have to cope with changing
user requirements. A fast application development method is needed to assure users
their needs are properly understood and to incorporate these changes into the system.

At the HAN University of Applied Science we have developed a procedure to
automate this fast development of information systems. We use a fact oriented con-
ceptual approach, which maintains the participation of the users during the entire de-
velopment process, so the developer can validate his/her design at any time. The in-
formation system model consists of an extended conceptual data model able to
include the user requirements for the system.
In this paper, we only briefly sketch the several issues involved in realizing automatic
application generation from a fact oriented point of view; each issue would merit a
separate paper.

This article is divided into four main sections. Section 1 sketches the context of our
work. Section 2 describes how to define a process driven approach from a data per-
spective, which enables a single point of definition for all metadata for the automated
information system in a conceptual layer. Section 3 shows how the automated infor-
mation system components can be generated from this single point of metadata. Sec-
tion 4 explains how everything can be implemented in a single repository, based on
the FCO-IM repository [1, 2] extended with extra fact types.

2 The extended data model

We distinguish between data related user requirements, described as usual in a data
structure model, and user requirements that tell us how, when and by whom the data
is handled, described in a data use model. Both models are integrated in an extended
data model, stored in a single point of definition, which facilitates the validation of
the information system and the automatic generation of the applications.

2.1 Concrete example

To illustrate these matters, we will use a small concrete example. It consists of an in-
formation system to support the registration of preferences of students for different
study programs that a certain university offers, and the acceptance of the students in
one of these programs; see the description in figure 1. This Program Registration ex-
ample is as small as possible for this paper, but the method has proved to work in lar-
ger cases.

An applicant can register for a study program by supplying his/her name,
date of birth, nationality, etc, and state up to 3 preferences for a study program.

Lecturers determine the programs on offer, and which kinds of documents are
required for each program, such as diplomas or mark lists.

The administration registers the received documents in the system. The ad-
ministration decides the enrollment deadline for each program as well.

An applicant will be accepted in a study program if it is one of his/her prefer-
ences, all necessary documents are present, the enrollment deadline has not yet
passed and the number of students accepted is less than the maximum number.

Fig. 1. Starting document describing the UoD of the Program Registration example.

2.2 The data structure model

We use Fully Communication Oriented Information Modeling (FCO-IM) [3] to ex-
press the data structure model in, because of the fact approach it takes, and because it
is based on a subset of natural language.

The FCO-IM data structure model presents fact types and business rules in a stan-
dardized way. The diagram in figure 2 captures all data fact types and basic business
rules such as uniqueness constraints, totality constraints, etc. More complex business

rules – such as the derivation rules for fact types Acceptance and Cur-
rent_No_Accepted – are not expressed in the diagram, but supplied in different form
as part of the model.

From an FCO-IM data model, we can generate a complete, redundancy free data-
base structure, including the parts that cannot yet be defined with a standard DDL.

88

last_namelast_name

preference_number

{ first, second, third }
1

preference_number

{ first, second, third }
11

3
Prog_Name

Informatics

F2 : "There is a
study program
in <3>."

O3 : 'the program
<3>'

3

1:

Study_Program

3
Prog_Name

Informatics

3
Prog_Name

Informatics

3
Prog_Name

F2 : "There is a
study program
in <3>."

O3 : 'the program
<3>'

33

1: Informatics

Study_Program

program_nameprogram_name

datedate

12
Doc_Name

bachelor diploma
financial statement
marks list
language test
GPA certif icate

F10 : "A <12> could
be asked for."

O4 : '<12>'

6

1:
2:
3:
4:
5:

Type_of_Document

12
Doc_Name

bachelor diploma
financial statement
marks list
language test
GPA certif icate

12
Doc_Name

bachelor diploma
financial statement
marks list
language test
GPA certif icate

12
Doc_Name

F10 : "A <12> could
be asked for."

O4 : '<12>'

66

1:
2:
3:
4:
5:

bachelor diploma
financial statement
marks list
language test
GPA certif icate

Type_of_Document

document_namedocument_name

10

Peter,Jo

11
Document

bachelor diploma

F5 : "<10> has handed in
his/her <11>."

7

1:

Documents_Handed_In

10

Peter,Jo

11
Document

bachelor diploma

10

Peter,Jo

10 11
Document

bachelor diploma

11
Document

F5 : "<10> has handed in
his/her <11>."

77

1: Peter,Jobachelor diploma

Documents_Handed_In

nationality_namenationality_name

13

Peter,Jo

14

British
F6 : "<13> has <14>."

8

1:

Person_Nationality

13

Peter,Jo

14

British

13

Peter,Jo

13 14

British

14
F6 : "<13> has <14>."

88

1: Peter,JoBritish

Person_Nationality
15

British
Dutch

F11 : "There is a
<15>
nationality."

O5 : '<15>
nationality'

13

1:
2:

Nationality

15

British
Dutch

15

British
Dutch

15
F11 : "There is a

<15>
nationality."

O5 : '<15>
nationality'

1313

1:
2:

British
Dutch

Nationality

16

Informat
Informat
Informat
Informat

17

bachelor diploma
financial statement
marks list
language test

F7 : "For <16>, a <17> is
required."

9

1:
2:
3:
4:

Requisite_Documents

16

Informat
Informat
Informat
Informat

17

bachelor diploma
financial statement
marks list
language test

16

Informat
Informat
Informat
Informat

16 17

bachelor diploma
financial statement
marks list
language test

17
F7 : "For <16>, a <17> is

required."

99

1:
2:
3:
4:

Informat
Informat
Informat
Informat

bachelor diploma
financial statement
marks list
language test

Requisite_Documents

22

Peter,Jo

23

Informatics

F12 : "<22> is accepted in
<23>."

14

1:

Acceptance *

22

Peter,Jo

23

Informatics

22

Peter,Jo

22 23

Informatics

23
F12 : "<22> is accepted in

<23>."

1414

1: Peter,JoInformatics

Acceptance *

24

Informat

25
Max_No_Ac

30

F13 : "The maximum number
of students allow ed
per <24> is <25>."

15

1:

Max_No_Accepted

24

Informat

25
Max_No_Ac

30

24

Informat

24 25
Max_No_Ac

30

25
Max_No_Ac

F13 : "The maximum number
of students allow ed
per <24> is <25>."

1515

1: Informat 30

Max_No_Accepted

quantityquantity

26

Informat

27
Current_No

23

F14 : "The number of
students enrolled in
the <26> is <27>."

16

1:

Current_No_Accepted *

26

Informat

27
Current_No

23

26

Informat

26 27
Current_No

23

27
Current_No

F14 : "The number of
students enrolled in
the <26> is <27>."

1616

1: Informat 23

Current_No_Accepted *

1
First_name

Peter

2
Last_name

Johnson

F1 : "Person <1> <2> has
registered."

O2 : 'person <1> <2>'

1

1:

Person

1
First_name

Peter

2
Last_name

Johnson

1
First_name

Peter

1
First_name

2
Last_name

Johnson

2
Last_name

F1 : "Person <1> <2> has
registered."

O2 : 'person <1> <2>'

11

1: Peter Johnson

Person

first_namefirst_name

21
Deadline

01/04/20

20

Informatics

F9 : "The deadline to enroll
in <20> is <21>."

11

1:

Enrollment_Deadline

21
Deadline

01/04/20

20

Informatics

21
Deadline

01/04/20

21
Deadline

20

Informatics

20
F9 : "The deadline to enroll

in <20> is <21>."

1111

1: 01/04/20Informatics

Enrollment_Deadline

8

Peter,Jo

9
Birth_Date

24/03/1975

F4 : "<8> w as born on
<9>."

5

1:

Person_Birth

8

Peter,Jo

9
Birth_Date

24/03/1975

8

Peter,Jo

8 9
Birth_Date

24/03/1975

9
Birth_Date

F4 : "<8> w as born on
<9>."

55

1: Peter,Jo24/03/1975

Person_Birth

28

24/03/1975
01/04/2004

O6 : '<28>'

17

1:
2:

Day

28

24/03/1975
01/04/2004

28

24/03/1975
01/04/2004

28
O6 : '<28>'

1717

1:
2:

24/03/1975
01/04/2004

Day

6
Pref_No

first

7

Peter,Jo

5

Informatics

F3 : "The <6> preference of <7> is
<5>."

19
18

1:

Program_Preference

6
Pref_No

first

7

Peter,Jo

5

Informatics

6
Pref_No

first

6
Pref_No

7

Peter,Jo

7 5

Informatics

5
F3 : "The <6> preference of <7> is

<5>."

19
18
19
18

1: f irstPeter,Jo Informatics

Program_Preference

O4
O5

O3 O4

O3

O36

O3

7

O2
O2

3

O2

O3

5

O2 O6 O6

O3O2
6

7

3

5

Fig. 2. FCO-IM data structure model for the Program Registration example.

2.3 The data use model

The data use model specifies user related aspects of the information system. It con-
tains user authorization and preference facts, and conditional constraint facts. Exam-
ples of these facts will be given below.

It is important to recognize that data structure fact types are the primary types of
fact to be determined by the developer. The data use facts only have meaning in rela-
tion to the data structure fact types, and are indeed defined in terms of these data
structure fact types. So the data use model can be seen from a completely data ori-
ented point of view.

In the following we describe how to define the main elements of the data use
model from a data driven perspective.

Defining user authorization facts in terms of data structure fact types. User au-
thorization facts and preference facts can only be specified fully by referring to data
structure fact types. Examples:

A user in the role of applicant has the right to insert facts of type Person.
A user in the role of lecturer has the right to delete facts of type Study_Program.

Examples of user preference facts will be given in section 3.

Defining conditional constraints in terms of data structure fact types. Conditions
that influence the processing of data facts can be defined as business rule facts on the
data structure fact types and user authorization facts. Examples of such constraints:

An applicant will be accepted in a study program if it is one of his/her preferences,
all necessary documents are present, the enrollment deadline has not yet passed and
the number of students accepted is less than the maximum number.

A user in the role of applicant has the right to insert facts of type Program-
Preference only after he/she has inserted a fact of type Person

All such business rule facts can be expressed as set constraints or negative set con-
straints [4].

2.3 Merging the data structure model and the data use model

By viewing the data use model from the data perspective, we can integrate both
data models, since the elements of the data use model are defined based on the data
structure model. We thus create a single point of definition for all metadata, which we
call the extended data model. Figure 3 shows this, also illustrating the development
process and the operational process of the automated information system.

Fig. 3. Extended data model as single point of definition for all metadata.

3 Generating an automated information system

Automatically creating an information system consists of generating the database
structure, a set of screens and a set of transactions.

The database structure can be generated from the data structure model, via an in-
termediate Entity-Relationship model or otherwise, as described elsewhere [3, 5]. We
describe in somewhat more detail below how to generate the set of screens, which al-
lows users to interact in a user friendly way with the data facts. The set of transac-
tions, the link between the set of screens and the data facts, is discussed briefly at the
end of this section.

3.1 Generating the set of screens

The set of screens supports the users of the system to interact in a consistent way with
data facts. The user interface reflects the user point of view on the facts. Creating a set
of screens consists of generating forms and user interface objects within a form. The
information used for generating the user interface is present in the extended data
model as data fact types, user authorization and preferences facts, and conditional
constraints. Below we sketch the steps involved in generating a set of screens.

Clustering elementary fact types. The FCO-IM data structure model (see figure 2)
contains elementary fact types, which are to be clustered to form collections of fact
types that users find natural. This clustering takes place in two steps. The first step,
grouping fact types, is determined completely by the data structure alone, whereas the
second step, clustering groups of fact types, requires user choices.

Grouping fact types. The first step in the clustering process is analogous to the group-
ing algorithm in FCO-IM [3], but from a broader point of view. Instead of ‘absorbing’
fact types into other fact types [3], they are kept intact but are assigned to a group of
fact types. Each group contains one fact type as its identifier fact type, and is given
the same name as this identifier. The other elementary fact types in the group can be
regarded as grouped to this identifier fact type. Each elementary fact type that itself is
completely identified by this identifier fact type will be grouped to it. Examples:

1. Each tuple in elementary fact type Birth_Date is identified by a person
(uniqueness constraint on role 8), therefore we say that fact type Birth_Date is
completely identified by fact type Person, so Birth_Date is grouped to Person.

2. Enrollment_Deadline is grouped to Study_Program.
3. Requisite_Documents cannot be grouped to either Type_Of_Document or

Study_Program, since neither identifies Requisite_Documents completely.
Figure 4 shows the result of this grouping process for the Program Registration ex-

ample. However, of each group of fact types, it shows only the name of the identify-
ing fact type. The group Person actually contains the following 4 fact types: Person,
Person_Nationality, Person_Birth and Acceptance. Their presence can be seen from
the fact type expressions F1, F4, F6 and F12 below the fact type.

Fig. 4. FCO-IM data structure model for the Program Registration example after grouping.

Clustering groups of fact types. The grouping in the previous step could be done
without introducing any redundancy. Further clustering is often desired by the users,
however. It is possible to cluster groups together if one group partly identifies the
other. This can be done in several ways, depending on uniqueness constraints, and so
the user can state his/her preferences, which is another opportunity to obtain user
validation. Examples (see figure 4):

1. The group Requisite_Documents is partly identified by the group
Study_Program and partly by the group Type_Of_Document. It can therefore
be clustered together with Study_Program, Type_Of_Document, or both (in-
dicated by the large arrows).

2. Documents_Handed_In can be clustered to Person, Type_Of_Document, or
both. The user is free to choose any option (including no clustering at all).

3. Group Preference has two identifiers, one relating partly to Person (uniqueness
constraint 2 on roles 7 and 6) and the other to Study_Program (constraint on
roles 6 and 5). The user considers uniqueness constraint 2 the primary identi-
fier of this fact type (indicated by the little ‘p’ in figure 4). This user choice
implies then that it can be clustered to Person only.

Generating forms. Each group of fact types formed in the first clustering step above
will be implemented on exactly one form. For each group that is additionally
clustered to another group in the second clustering step above, a child-form will be
generated, with the form of the group it is clustered to as its parent form.

Forms. The name of the group is also that of the form. One or more user interface ob-
jects will be created for each elementary fact type in the group. If the elementary fact
type is derivable (such as fact types Acceptance and Current_No_Accepted), then the

user interface object(s) will be read-only, otherwise they will support both reading
and updating facts.

The identifier fact type of each group will be the default identifier for the form.
Sometimes however users would like to have a more ‘natural’ identifier than this.
Therefore the identifier can optionally be extended with other fact types that are part
of the group. We call such an extended identifier a human key [6]. For example: the
user wants Person_Birth to be part of the identifier on the form, so a person is identi-
fied as ‘Peter Johnson 24/03/1975’, although ‘Peter Johnson’ formally suffices.

Child forms. Choosing which child forms are to be placed on a parent form is really a
domain expert choice from the options during the second step of the clustering proc-
ess. See figure 4: if the user chooses to cluster Person, Program_Preference and
Documents_Handed_In, then the parent form Person will contain two child forms
Program_Preference and Documents_Handed_In.

For each child form a child-form-preview user interface object is introduced. This
object will serve as a gateway for maintaining data about the child form and will offer
a preview of child form data.

User forms. The forms explained above are the basis for generating the actual forms
for the users. The further form design is based on the intersection of the user authori-
zation rights and the elementary fact types clustered on the form, taking conditional
constraints into account as well.

Forms directly accessible from the main menu. Forms that will not be child-forms of
other forms will be directly accessible from the main menu. The user can choose to
have some child-forms directly accessible as well.

Generation of user interface objects (UIO’s). Every fact type needs a UIO to be
accessible in a user friendly way. From a structural point of view, fact types are
collection of roles. Some of these roles correspond with the identifier fact type of the
group and the other roles are specific for the fact type. A UIO will be created for
every specific fact type role. The functionality of the UIO depends on the object type
that plays the role. There are two kinds of object types playing roles: lexical object
types and non-lexical object types.

Lexical object types (LOT’s). A LOT is the most basic construct in an FCO-IM
model, which can be seen as a source of names. Every LOT has an elementary data
type and value constraints associated with it, used by the corresponding UIO’s. The
UIO’s make sure that only allowed values can be inserted. Examples:

LOT first_name accepts strings of up to 15 characters. The UIO for roles played
by first_name will be a text box that allows up to 15 characters.

LOT preference_number accepts strings of characters from the set {first, second,
third}. The UIO for roles played by preference_number will be a list of allowed val-
ues from which the user can pick. It can be a combo box or a list box.

Non-lexical object types (NLOT’s). An NLOT can be seen as a compound data type
defined in the model. The UIO’s that represent the NLOT’s are derivations of a ge-
neric UIO that we call the lookup object. It is possible to define a specific UIO for
every NLOT. The lookup object encompasses the functionality that is common for all
NLOT’s. It displays the list of the fact types involved in the human key and allows the
user to pick one of the values. Example: There is an NLOT Study_Program identified
by Program_name. The user likes to have the deadline date in addition to the program
name as human key. In the lookup object for Study_Program there is also a list of all
programs registered.

User preferences. As shown above, the user interface is mainly generated from the
information in the data structure model, the authorization rights and the conditional
constraints. However there are also facts about the user interface that depend only on
user preferences. These preferences are confined within the boundaries defined by the
structure, authorization rights and constraints. These user preferences facts are seen as
part of the model and must be stored as well in the single point of metadata definition.
Below we mention some of the most important types of user preferences.

User preferences that have to do with UIO colors, the way they are organized in a
form, the order of access of elementary data fact types, etc. These preferences can be
determined by interviewing the users, but we always supply a default choice. Exam-
ple: The order of access to UIO’s in a form can be derived from the order of the ele-
mentary fact types in their collections.

User preferences that have to do with UIO’s that have more than one alternative of
display. Example: LOT preference_number has more than one representation for its
UIO: drop down list, option buttons, or list.

User preferences that have to do with the human key definition. Only the domain ex-
pert can decide how to extend the minimal key with other fact types.

User preferences that have to do with lookup child-form object definition. The domain
expert can decide which fact types to include in a preview of a child form.

3.2 Generating the transactions

Transaction processing assures that the correct transaction is executed in the correct
user form by considering all constraints and authorization rights. Facts are entered
into the system through the UIO and stored in the database, which is a relational
model. A transaction does the mapping between the UIO in the user form, the data-
base structure and the data fact types. For every user form generated by the basic
form, transactions that insert, delete and update facts are generated as well. A transac-
tion associated with a form considers only the collection of facts types clustered to-

gether and takes the user authorization rights and conditional constraints into account.
A transaction involves:
- checking constraints involving new candidate facts and all existing facts
- executing one or more main insert/delete/update statements for storing new facts
- executing other relevant insert, delete or update statements
- checking complex constraints that cannot be checked by the DBMS. This involves

conditional constraints as well.

From the above description it is clear that the complete extended data model (both
data structure and data use model) is needed to automatically generate an information
system.

4. The implementation

The implementation of these ideas consists of two main tracks:
1. Automation of the development process
This involves the set of tools used to translate the user requirements into metadata
stored in the repository. These tools must also support the validation process. The
tools involve: the data Modeling Tool to create the data structure model (for which we
use CaseTalk [2]), and the Application Bridge that supports the developer for interact-
ing with the information grammar to extend the information grammar with application
definition related facts.
2. Automation of the generation process
This is the Application Engine. It understands the extended data model repository (the
extended FCO-IM repository), generates the user interface, controls the user rights
and does the transaction processing. See figure 5.

Extended data model Extended data model
repositoryrepository

DatabaseDatabase
systemsystem

Modeling Tool &Modeling Tool &
Application bridgeApplication bridge Application engineApplication engine

Application 1Application 1

User communityUser community

Application 2Application 2 Application 3Application 3

Developer Developer
communitycommunity

Fig. 5. The development and generation processes.

Conclusion

This paper touches the main elements of application generation from a fact oriented
point of view. Advantages of taking this approach versus the more classical way of
considering application definition as an extension of the relational model are:
- More consistency in the definition of concepts. In the fact approach everything is

considered as a fact.
- User authorization and other constraints are defined upon fact types and/or facts.

This reduces mistakes made during the determination of the constraints and user
authorization and makes their validation easier.

- It introduces the definition of user authorization and conditional constraints from
the start in the development process.

All elements in the application generation process mentioned in this paper are cur-
rently being investigated in greater detail.

References

1 Bakema, Guido: FCO-IM Repository, Course materials, HAN University of Applied Sci-
ence, Arnhem, the Netherlands (1995).

2 BCP Software: CaseTalk, FCO-IM modeling tool, see http://www.CaseTalk.com.
3 Bakema, Guido; Zwart, Jan Pieter; Lek, Harm van der: Fully Communication Oriented In-

formation Modeling (FCO-IM), 2002. The book can be downloaded for free from
http://www.casetalk.com/php/index.php?FCO-IM%20English%20Book.

4 Bakema, Guido: Negative SQL Statements, private communication (2002).
5 Manoku, Elton; Bakema, Guido: Integrated Tool support for Datawarehouse Design, Journal

of Conceptual Modeling, issue 34, January 2005.
6 Luursema, Eddy: Human Key, private communication (2004).

http://www.casetalk.com/

	Defining user authorization facts in terms of data structure fact types. User authorization facts and preference facts can only be specified fully by referring to data structure fact types. Examples:

