
© HAN University, 2005   1 

Integrated Toolsupport for Datawarehouse Design 
 

Elton Manoku, Guido Bakema 
Research and Competence Group Data Architectures & Metadata Management 

Academy of Communication and Information Technology 
HAN University of Applied Sciences 

The Netherlands 
January 2005 

 
 

Abstract 
In operational practice, datawarehouses are big corporate databases that are continuously 
under development. This implies a dynamic increase of the complexity of the data. For 
controlling this complexity, a conceptual model driven approach is recommended in order 
to guarantee that the relation to the business environment can be validated at any moment. 
To keep maintainable the connection between the conceptual model and the 
logical/physical aspects of the datawarehouse and related data marts, bridges are needed 
that can provide the needed model-to-model conversion at any desired moment. To achieve 
this, a bridge-toolset was designed and developed which is based on a single point of 
definition metadata philosophy. The philosophy and the way of working were developed in 
a research project at HAN University in The Netherlands in co-operation with the Dutch 
system house Atos Origin to overcome datawarehouse life cycle maintenance problems in 
the Royal Dutch Airlines (KLM). 

 
 

1 Introduction 
Section 1.1 gives a short introduction to the conceptual modeling method FCO-IM (Fully Communication Oriented 
Information Modeling) used for constructing the conceptual layer of a datawarehouse in the form of an FCO-IM 
information grammar. The conceptual layer is the starting point for all further data models playing a role in the 
datawarehouse lifecycle. Section 1.2 gives an impression of the transformation of these conceptual FCO-IM 
information models to the logical and physical layers. 
 

1.1 Introduction to Fully Communication Oriented Information Modeling 
In this short introduction, the main concepts and terminology of FCO-IM [1][2] are only touched upon. FCO-IM is a 
fact-based information modeling method that originates from NIAM [3]. The analysis takes place in a dialogue between 
the analyst and an expert user, who is requested to verbalize facts and express them through fact stating sentences (fact 
expressions). These fact expressions are classified and qualified and the type level result with constraints added is called 
an FCO-IM information grammar that can be visualized as an FCO-IM information grammar diagram. The 
classification and qualification is, apart from extending the soft semantics (predicates and type level naming), the main 
source for hard semantics (structural and integrity aspects of the model) for the information grammar. More hard 
semantics are added in the form of constraints (like uniqueness constraints, total role constraints and so on). The 
resulting information grammar (IG) is stored in a standardized FCO-IM repository and presented in one or more related 
information grammar diagrams (IGD’s) that are self-synchronizing auto-visualizations of the repository population. 
 
In the following Floors & Rooms example (see figure 1) elementary facts are considered. Using elementary fact 
expressions has many benefits. The most important one is that it guarantees redundancy freeness. The resulting 
information grammar is called an elementary information grammar (El-IG). 
 
 
"Floor 1 exists." 
"Floor 2 exists." 
"There are 2 emergency exits on floor number 1." 
"There are 0 emergency exits on floor number 2." 
"There is a room 2.1." 
"There is a room 1.1." 
"There is a room 1.2." 

"Room 2.1 has 20 seats." 
"Room 1.1 has 17 seats." 
"Room 2.1 is equipped with a PC." 
"Room 1.1 is equipped with a PC." 
"We have PC’s available." 
"We have LCD’s available." 

Figure 1: Floors & Rooms sample fact expressions 



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   2 

The diagram (El-IGD) of the resulting elementary information grammar (El-IG) is shown in figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Floors & Rooms El-IGD 
 
Applying the FCO-IM Group & Reduce algorithm to the elementary information grammar (El-IG) results in a grouped 
and reduced information grammar (GR-IG). See figure 2 for the corresponding diagram (GR-IGD). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Floors & Rooms GR-IGD 
 
The Group & Reduce algorithm brings fact types together as much as possible without introducing redundancy. In other 
words, starting from the elementary information grammar, this process gives a normalized model of the information 
grammar with a minimum number of fact types. From this grouped and reduced information grammar, fact sentences 
can still be reproduced. 
 
Applying also (in between or afterwards) the Lexicalize algorithm results in a grouped, lexicalized and reduced 
information grammar (GLR-IG). See figure 4 for the diagram (GLR-IGD). 
 
From all these FCO-IM information grammars (EL-IG, GR-IG, GLR-IG) the fact sentences can be regenerated. 
 

4

2,1
1,1

5_ OF SEATS

20
17

CAPACITY

F2 : "<4> has <5> seats."
1:  
2:  

3

NUMBER

6

1
2
1

7

2
1
1

ROOM

F4 : "There is a room <6>.<7>."
O2 : 'room <6>.<7>'

1:  
2:  
3:  

4

8

2,1
1,1

9

PC
PC

EQUIPMENT

F3 : "<8> is equipped with a <9>."
1:  
2:  

5

10

PC
LCD

FACILITY

F5 : "We have <10>'s 
available."

O4 : '<10>'
1:  
2:  

6

2

1
2

1_ OF EXITS

2
0

EMERGENCY EXITS

F1 : "There are <1> exits on <2>."
1:  
2:  

2

3

1
2

FLOOR

O1 : 'floor number <3>'
O3 : '<3>'

1:  
2:  

1

FLO O R NUMBER

{ 1, 2, 3 }
1

RO O M NUMBER
FACILITY CO DE

O2

O2

O4

O1

O3

NUMBER

8

2,1
1,1

9

PC
PC

EQUIPMENT

F3 : "<8> is equipped with a <9>."
1:  
2:  

5

10

PC
LCD

FACILITY

F5 : "We have <10>'s 
available."

O4 : '<10>'
1:  
2:  

6

FLO O R NUMBER

{ 1, 2, 3 }
1

RO O M NUMBER
FACILITY CO DE

3

1
2

1
_ OF EXITS

2
0

FLOOR

F1 : "There are <1> exits on floor 
number <3>."

O3 : '<3>'
1:  
2:  

1 p

6

1
2
1

7

2
1
1

5
_ OF SEATS

OP

-
20
17

ROOM

F2 : "Room <6>.<7> has <5> seats."
F4 : "There is a room <6>.<7>."
O2 : 'room <6>.<7>'

1:  
2:  
3:  

4
O4O2O3

2



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   3 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Floors & Rooms GLR-IGD 
 
To support this way of working with different co-existing and related FCO-IM models and keeping synchronization 
between them, a consistent repository-based approach is used. Every FCO-IM model (El-IG, GR-IG, GLR-IG) exists in 
a generic repository and the GLR algorithms are just reading and updating this FCO-IM repository that is used by FCO-
IM supporting CASE-tools like FCO-IM Casetool [4] and CaseTalk [5], which are widely in use in the Netherlands in 
the academic world and proved their value in industry as well. 

1.2 Unmasking the Conceptual Models 
Essentially, the GLR-IGD of figure 4 already is a Relational Schema in BCNF. Database administrators might like to 
see that in a more familiar representation. The GLR-IGD must, so to speak, drop its FCO-IM mask and present itself 
more openly as a Relational Schema. Apart from the GLR algorithms, also the Relational Model (RM) unmasking 
algorithm is implemented in FCO-IM supporting tools. Because all soft semantics are stored, fact type expressions (i.e. 
fact expressions at type level) can be generated along with the resulting Relational Schema as well, providing hard 
semantics as well soft semantics. 
 
The GR-IGD of figure 3 is essentially an Entity-Relationship diagram (ERD). The ER unmasking algorithm converts a 
GR-IGD into an ERD in a more familiar Entity-Relationship notation. See figure 5 where the Information Engineering 
syntax is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Floors & Rooms ERD 
 
The UML unmasking algorithm converts a GR-IGD into an UML Class Diagram. See figure 6. 
 
In both cases the sentences cannot be presented any more along with the diagrams, but they are still present in the form 
of comments or descriptions in structure elements, nor can a population be presented. In the case of a Class Diagram, an 
object diagram can present the population. Within ER and UML tools, then, a physical model and Relational and OO 
data definition scripts can easily be generated for Relational and OO platforms. 
 

ROOM_FLOOR

is in EQUIPMENT

is equipped with a

FACILITY

FACILITY CODE <pi> FACILITY_CODE <M>

FLOOR

NUMBER_ OF EXITS
FLOOR NUMBER <pi>

NUMBER
FLOOR_NUMBER

<M>
<M>

ROOM

NUMBER_ OF SEATS
ROOM NUMBER <pi>

NUMBER
ROOM_NUMBER <M>

Subset constraints : 

1:  ROOM(6) -->-- FLOOR(3)
2:  FLOOR(3) -->-- ROOM(6)
3:  EQUIPMENT(8.1, 8.2) -->-- ROOM(6, 7)
4:  EQUIPMENT(9) -->-- FACILITY(10)

NUMBER

FLO O R NUMBER

{ 1, 2, 3 }
1

RO O M NUMBER

FACILITY CO DE

8.1

2
1

8.2

1
1

9

PC
PC

F3 : "Room <8.1>.<8.2> is equipped with a 
<9>."

9 p

1:  
2:  

EQUIPMENT

10

PC
LCD

F5 : "We have <10>'s 
available."

6 p

1:  
2:  

FACILITY

3

1
2

1
_ OF EXITS

2
0

F1 : "There are <1> exits on floor 
number <3>."

1 p

1:  
2:  

FLOOR

6

1
2
1

7

2
1
1

5
_ OF SEATS

OP

-
20
17

F2 : "Room <6>.<7> has <5> seats."
F4 : "There is a room <6>.<7>."

7 p

1:  
2:  
3:  

ROOM



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Floors & Rooms UML Class Diagram 
 

2 An Integrated Toolset for Datawarehouse Design 
In section 2.1 the datawarehouse life cycle is characterized and challenges are discussed. Section 2.2 introduces a 
Metadata Framework that was designed to master these challenges. Section 2.3 presents a supporting tool-set that can 
help to deal with the challenges in big datawarehouse projects. The most important one is a tool for automated 
conversion of normalized models into dimensional models. Section 2.4 ends with the general architecture of the 
supporting tool-set. 
 

2.1 Challenges from the Datawarehouse World 
The datawarehouse lifecycle process starts with interviewing future datawarehouse users and gathering information 
about source systems. This is followed by the analysis and the design of the datawarehouse. The next stage is the 
implementation, including designing and implementing the ETL process, data marts design and generation and 
development of OLAP applications. Eventually these are put in use in order to provide the desired business intelligence. 
This process looks rather straightforward, but in general it is not. There are many challenges. Finding equilibrium 
between user demands and the source systems involves quantitative (many fact types) and qualitative (integrating 
domain area’s) complexity. The transformation towards dimensional models is, from the design point of view, another 
complex process. These challenges are difficult to master. In general the development of big corporate datawarehouses 
is an evolutionary process: the datawarehouse is continuously developing, with all version-to-version management 
challenges. 
 
Let’s suppose that the data architects succeed to come up with a first version of a data model for the datawarehouse that 
can be related to the source systems and sufficiently meets the user requirements. The danger exists that after the data 
model is retrieved and further versions are developed, the connection between the initial user requirements and the 
definitive data model gets lost. This danger rises also when a physical model is retrieved and again if dimensional 
models are derived. At the end it might be a surprise that the result is no longer something that meets the user 
requirements. This danger can be avoided if all model-to-model conversions are made algorithmically, keeping alive, 
during these conversions, the correspondence between user requirements and data models. 
 

2.2 A Framework for Metadata Management 
In this section a framework is presented for meeting the above-mentioned challenges during datawarehouse projects by 
means of proper metadata management. This Metadata Framework [6][7] tries to conquer the version-to-version 
complexity and the dangers related to the model-to-model transformation by giving the metadata of the elementary 
FCO-IM model of the datawarehouse a single-point-of-definition status. All other models are derived from that in an 
automated way. The idea is a layering of the datawarehouse lifecycle based on different phases of the datawarehouse 
development. Jumping from one development layer to another consists in transforming the metadata at the conceptual 
level, whilst continuously being able to convert it on demand to desired logical and physical platforms: Entity-
Relationship, UML and/or Relational. 

0..*
0..*1..* 1

FACILITY

- FACILITY CODE : string

+
+
+
+

GetFACILITY CODE ()
GetEQUIPMENT_ROOM ()
SetFACILITY CODE (string NewFACILITY CODE)
SetEQUIPMENT_ROOM (ROOM NewEQUIPMENT)

: string
: ROOM
: void
: void

FLOOR

-
-

FLOOR NUMBER
NUMBER_ OF EXITS

: int
: int

+
+
+
+

GetFLOOR NUMBER ()
GetNUMBER_ OF EXITS ()
SetFLOOR NUMBER (int NewFLOOR NUMBER)
SetNUMBER_ OF EXITS (int NewNUMBER_ OF EXITS)

: int
: int
: void
: void

ROOM

-
-

NUMBER_ OF SEATS
ROOM NUMBER

: int
: int

+
+
+
+
+
+
+
+

GetNUMBER_ OF SEATS ()
GetROOM NUMBER ()
GetEQUIPMENT_FACILITY ()
GetROOM_FLOOR_6_FLOOR ()
SetNUMBER_ OF SEATS (int NewNUMBER_ OF SEATS)
SetROOM NUMBER (int NewROOM NUMBER)
SetROOM_FLOOR_6_FLOOR (FLOOR NewROOM_FLOOR_6)
SetEQUIPMENT_FACILITY (FACILITY NewEQUIPMENT)

: int
: int
: FACILITY
: FLOOR
: void
: void
: void
: void



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   5 

These datawarehouse development layers include Elementary Models, Normalized Models and equivalent 
Dimensional Models in the form of families of stars with conformal dimensions [8] that can easily be split up into a 
collection of separate data marts, consisting of just one or a few related stars. All of this can be presented at a 
conceptual (i.e. FCO-IM style models), logical (i.e. Entity-Relationship models and/or UML class diagrams) and 
physical (i.e. Relational Schema’s) level and as such be imported in logical and physical level tools. 
 
This way of working also guarantees maintaining a close relationship between hard and soft semantics at any moment, 
which is considered essential for running datawarehouse projects successfully. Datawarehouse users can validate the 
present version of the conceptual models at any moment and assure the datawarehouse team that they are working in the 
right way. On the other hand, logical and physical models fulfilling the validated business requirements and the 
technical aspects of datawarehouses and data marts can be generated instantaneously, even, if desired, with preservation 
of all soft semantics together with the hard semantics. 
 
Figure 7 shows a simplified picture of the Metadata Framework, focusing on the conceptual and logical layers. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Simplified picture of the Metadata Framework 
 
The starting point for modeling the datawarehouse is a set of elementary facts covering all user needs concerning the 
datawarehouse. These elementary facts are the source for the Elementary Model. Arrow 1 shows that the Elementary 
Model can be retrieved from analyzing elementary fact expressions and the elementary fact expressions can be 
regenerated from the Elementary Model. 
 
The Normalized Model of the datawarehouse is a more compact view of the elementary facts. The elementary fact 
types are grouped together as much as possible without introducing redundancy, the resulting FCO-IM information 
grammar is equivalent with an Entity-Relationship Model or Relational Schema in at least BCNF. See section 1.2. 
Arrow 2 shows that the Normalized Model can be retrieved from the Elementary Model by applying the GR algorithm 
or the GLR algorithm (see section 1.1). If the facultative R (reducing) part of the algorithm it is not used, the 
Conceptual Model can again be retrieved from the Normalized Model. 
 
The Dimensional Model of the datawarehouse consists of elementary fact types further grouped (actually overgrouped) 
for getting a denormalized dimensional view in the form of a dimensional FCO-IM information grammar (family of 
stars in FCO-IM style) that can be unmasked to get an equivalent Entity-Relationship Model or Relational Schema as 
well. Arrow 3 shows that the Dimensional Model can be retrieved from the Normalized Model by applying the 
StarBridge algorithm [9][10][11], based on the covering forest theorem [12]. In the Dimensional Model redundancy is 
introduced in such a way that candidate Fact Tables and related Dimension Tables are indicated. Arrow 4 shows that 
domain experts can retrieve the elementary fact expressions in natural language for validation purposes at any moment. 
 

2.3 Supporting Tool-set 
The Metadata Framework is supported by an FCO-IM based modeling and model-to-model conversion tool-set. From 
the point of view of functionality, the tools are of two different types: 
 
a. Decision driven modeling and model-to-model conversion at the conceptual level. 

This kind of tools is used to transform a conceptual model into another conceptual model, more or less based on 
decisions of the analyst. The tools of this type used for support of the Metadata Framework way of working are: 
- CaseTalk. This is an FCO-IM modeling tool used by the analysts to translate the facts into diagrams by adding 

structure and integrity to fact expressions and bringing them on type level in an Elementary Model (El-IG). 
The tool is completely repository based and offers in-repository Group, Lexicalize and Reduce algorithms with 
all resulting conceptual diagrams and the unmasking algorithm for the presentation of a Normalized Model 
(GLR-IG) in more familiar Relational style. See section 1. 

User requirements given in elementary facts 
Fact sentences in natural language, can be validated by domain experts 

 

 

Elementary Model 
of the DWH 

Normalized Model 
of the DWH 

Dimensional Model 
of the DWH 

C
on

ce
pt

ua
l l

ay
er

 

U
oD

 
FC

O
-I

M
 M

od
el

s 

1 2 3 4 



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   6 

- Star Bridge. This FCO-IM based tool supports the analyst for retrieving a Dimensional Model (D-IG) and as 
such, like CaseTalk, is an important conversion tool to support the Metadata Framework layers at the 
conceptual level. This tool takes as input a Normalized Model (FCO-IM GR-IGD) and outputs a denormalized 
Dimensional Model for the datawarehouse. Recently the FCO-IM repository was extended in order to be able 
to store at the conceptual level dimensional datawarehouse models (FCO-IM D-IG’s) as well and a conversion 
algorithm was specified that helps the analyst to convert a conceptual normalized model (FCO-IM GR-IG) to 
an equivalent dimensional Model (FCO-IM D-IG). The tool implements the StarBridge algorithm that consists 
of several distinct steps. See figure 8. 

 
b. Supporting straightforward model-to-model unmasking conversions. 

These tools are used to transport the conceptual metadata to the logical/physical platforms. For support of the 
Metadata Framework, the following tools are available: 
- ER Bridge. Provides a bridge between the FCO-IM world and the Entity-Relationship world. It exports 

conceptual models (Normalized Models and Dimensional Models) to the logical/physical world of ER tools. It 
realizes this by using repository-to-repository transformation: export and conversion of the metadata of an 
FCO-IM Model (GR-IG) to an intermediate Entity-Relationship Repository and export from that into ER tools. 

- UML Bridge. Provides a bridge between the FCO-IM world and the UML world (Class Diagrams). It realizes 
by using repository-to-repository transformation, the export of an FCO-IM Model (GR-IG) to an intermediate 
Class Diagram Repository and export from that into UML tools. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: StarBridge tool architecture 
 
Figure 9 shows how the tools are used in an integrated way in the Metadata Framework. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Integrated Tool Support for the Metadata Framework 

5 

 

 

User requirements given in elementary facts 
Fact sentences in natural language, can be validated by domain experts 

Elementary 
Model 

FCO-IM Diagram 

Normalized 
Model 

FCO-IM Diagram 

Dimensional 
Model 

FCO-IM Diagram 

C
on

ce
pt

ua
l l

ey
el

 

U
oD

 
FC

O
-I

M
 M

od
el

s 

1 2 3 4 

 

Normalized 
Model 

ER/Class Diagram 

Dimensional 
Model 

ER/Class Diagram L
og

ic
al

 le
ye

l 

E
R

/U
M

L
 M

od
el

s 

5 

Decisions taken by 
the analyst for 
different 
transformations 

StarBridge 
 

Transformation steps 
towards  

a dimensional model 

Save analyst’s 
decisions 

Normalized Model 
(FCO-IM IG) 

Load analyst’s decisions 
taken before in another 
project 

Dimensional Model 
(FCO-IM IG) 



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   7 

Arrows 1, 2, 4 are handled from CaseTalk, arrows 3, 4 are handled from Star Bridge and arrow 5 is handled from 
ERM Bridge and UML Bridge. 

2.4 Tool Architecture 
Even though the conversion tools are implementing different algorithms, all conversion tools are based on in-repository 
or repository-to-repository transformations. At the moment all repositories are in Relational format and the in-
repositories or repository-to-repository transformations are made by Structured Query Language (SQL). ER Bridge, 
UML Bridge and Star Bridge are modules integrated in one FCO-IM Bridge tool. They receive an appropriate copy 
of the populated Relational FCO-IM repository from the FCO-IM modeling tool CaseTalk. 
 
As a consequence, the tools can be conceived as sets of queries running in a given order, and developing this kind of 
tools means thinking about SQL-instructions that carry out tasks. Each instruction has properties related to them such as 
name of instruction, type, body, what step of the algorithm it is involved in, order of execution, etc. These properties are 
stored in a repository along with the instructions themselves and their descriptions. This architecture makes tool 
implementation easier and helps a lot for tool maintenance. Here, the idea of storage of the hard and soft semantics of 
the algorithm in a consistent and redundant free way is applied again. 
 
There are two groups of reasons for choosing a repository-based architecture for the transformations as well: 
 
a) Reasons related to the algorithms applied in the tools. What makes conversion tools different from each other is the 

algorithm implemented by them? Regarding to the implemented algorithm some reasons to use a repository is: 
- Single source of algorithm logic. 
- Single source of algorithm description. 
- Automatic generation of the implemented algorithm documentation. 
- Easy maintenance of the implemented algorithm. 
- Generation of code for other programming language platforms. 
- The algorithm is not part of the code and can be easily changed and maintained. 

 
b) Reasons related to the User Interface of the tool: 

- To get an efficient tool a good terminology is required. By terminology is meant: what to call the different 
operations within the tool, the different steps, the notations for parts of the algorithms (‘Dimension’, ‘Do not 
reduce’, etc.), the messages, the captions, etc. Most probably this differs from one language to another. For the 
best notation, the best strategy is again to interview many people. If this kind of information is stored in a 
repository, every analyst can select his own notation. 

- For parts of the interface that are highly dynamic, like the order of interface steps, it is convenient to keep this 
information in repository. From the repository, it is much easier to impose rules on order of steps. 

 
For running the tool logic against the tool repository an engine is needed. This engine depends on the tool's repository 
structure, but has nothing to do with the algorithms stored in the tool repository. The engine is a set of functions and 
procedures that makes possible the communication between the tool logic and the tool repository and that handles the 
information found in the tool repository. The engine must handle the information on the algorithm stored in the tool 
repository, and the tool interface. In designing of such an engine the main concern is: 
- Handle any possible case that can be found in the algorithms. 
- Retrieve / update terminology used in the tool. 
- Have redundant free code as much as possible. 
- Use dynamic structures of functions making them reusable for different cases. 
 
Figure 10 shows the overall architecture of the tool-set. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: The overall Architecture of the tool-set 

  

Tool Engine 

FCO-IM Bridge 
(Conversion tools) 

CaseTalk 
(FCO-IM Modeling tool) 

ERM Tool / UML Tool 
(External tools) 

CaseTalk 
FCO-IM Repository Extended  

FCO-IM Repositories 
ERM / Class Diagram 

Repository 

Tool Repository 



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   8 

The CaseTalk modeling tool uses the basic FCO-IM Repository, in which the following conceptual models are stored: 
elementary and grouped & reduced FCO-IM information grammars. The ER Tool Repository and UML-Class Diagram 
Tool Repository are external ER or UML Tool repositories (CA Allfusion ERwin 4.1, Sybase PowerDesigner 9) where 
the exported models can be stored. 
 
At the moment, the exchange of models between the repositories of the tools is based on different techniques.  
- The export of the models from CaseTalk to FCO-IM Bridge is Relational format based.  
- The export of the models from FCO-IM Bridge to the external ER and UML tools is based on XML document 

exchange (ERwin 4.1) and VBScript generation (PowerDesigner 9). For the techniques that can be used, it is of 
course relevant what the external tool offers. 

 
In order to achieve independence from the external ER tools, a Metadata Repository Model for storing ER Models is 
used that also supports the storage of alternative keys. This model is physically implemented in the form of views on 
top of the extended FCO-IM Repository. In the near future an XML Schema format will be used for supporting this 
exchange. The same goes for UML-Class Diagrams. 
 

2.5 Dimensional modeling in other Case-tools 
Automated dimensional model generation has recently been incorporated in some extend in entity relationship modeling 
tools like Erwin 4.1 and PowerDesigner 9. 
CA AllFusion Erwin 4.1 provides a very limited feature by only identifying potential fact tables without support of 
model transformation. Powerdesigner 9 goes much further with its dimensional modeling process by doing some model 
transformation on a physical data model. This transformation transforms the snowflake structure straightforward to a 
pure star schema and the final aim is to have a set of cubes for an end user application. This straightforward 
transformation process is very limited and does not support any choices, like degeneration of dimensions, introducing of 
mini or aggregate dimensions, introducing meaningless keys, support for snowflaking part of the schema and so on. 
 
An important issue is that the transformation towards a dimensional model in Powerdesigner 9 is done in the physical 
layer, where it is very hard to validate the generated model. Apart from that, in Powerdesigner 9 the model proofs to be 
very vulnerable for wrong transformations performed by the analyst. 
 
It is clear that for the moment the approach as presented in this article is much more powerful and much richer. 
 
 

3 The Approach in Practice 
This section shows how the outlined approach is used in practice. Section 3.1 gives a few characteristics of the KLM 
Passage datawarehouse project. In this long term project the described approach is used and developed further, and the 
project serves as an operational test environment for the tool-set that is continuously developing. In section 3.2 it is 
demonstrated, using only a small part of the KLM Passage Model, how the StarBridge algorithm works in practice. 
 

3.1 The KLM Passage Model 
The KLM Passage Model is a corporate datawarehouse data model for the passenger division in Royal Dutch Airlines 
(KLM). Data are extracted from 5 different source systems and from the Internet. 
 
The modeling tools used in the KLM Passage project are: CaseTalk, FCO-IM Bridge and ERwin. 
 
The number of fact types in the conceptual Elementary Model (an FCO-IM El-IG) is more than 600. The logical 
Normalized Model (an ERD) that is generated from the conceptual Normalized Model has more than 180 entity types. 
The physical Dimensional Model (family of stars with conformal dimensions) generated from the conceptual 
Dimensional Model has 16 fact tables and about 37 dimension tables, whilst 177 relationships refer from the fact tables 
to the dimension tables. At the moment about 13 separate data marts (each consisting of 1 or 2 stars) are loaded on a 
weekly or monthly basis. 
 

3.2 The Forecast Sub-model 
From the KLM Passage Model the Forecast Sub-model is used here to demonstratehow the StarBridge algorithm works. 
Only the modeling part of the datawarehouse lifecycle is considered in this example. For simplicity (not overloading 
figures) and privacy reasons, the population will not be part of diagrams. 
 



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   9 

Suppose that the analysts, after interviewing potential datawarehouse users and taking into account what data can be 
provided by the source systems, come up with a set of fact expressions shown in figure 11. To be sure that no 
redundancy is present, the fact expressions are elementary. They are also formulated in the desired grain. 
 
The next step is the classification and qualification of these fact expressions. This step is executed by using the FCO-IM 
modeling tool CaseTalk. Constraints are added by further interviewing domain experts. Hard and soft semantics are 
automatically stored in the CaseTalk FCO-IM Repository. From the resulting conceptual Elementary Model (see figure 
12) fact sentences can be regenerated for user validation. 
 
To obtain a Normalized Model in conceptual form, these fact types are grouped together without losing the granularity 
that is expressed in the fact expressions. This step is also performed by CaseTalk by applying the Group & Reduce 
algorithm to the Elementary Model. See figure 13. 
 

"There exists a Month with Monthnumber 04." 
"Month 04 has Monthname April." 
"Month 04 has Bookmonthnumber 01." 
"Period (01, 1998) belongs to Bookyear_Quarter (4, 1997/1998)." 
…. 
"There exists a LineGroup with LineGroupcode A." 
"LineGroup A has LineGroupname Europe." 
"A Budget is made for LineGroup A and Period (04, 1998)." 
…. 
"The Budget for LineGroup A and Period (04, 1998) has a DiscComm_Amount of functional currency 5." 
"The Budget for LineGroup A and Period (04, 1998) has a Gross_Turnover of functional currency 25." 
…. 

Figure 11: Sample set of fact expressions for the Forecast Sub-model of the KLM Passage Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: The conceptual Elementary Forecast Sub-Model of the KLM Passage Model 

LineGroupcode

Amount

Number_of_PAX_kms

Line Groupname

EUR_ICAcode

Number_of_Se atkms

Bookyear

Q uarte rnumbe r

Ye ar

Bookmonthnumber

Monthname

Monthnumber

105

F58 : "There exists a 
LineGroup with 
LineGroupcode 
<105>."

LineGroup

890
Made_for__

889

F503 : "A Budget is made for <889> 
and <890>."

LineGroup_Budge t

902
Made_in__

901

F504 : "A Forecast is made in <902> 
for <901>."

LineGroup_Fore cast

1

F1 : "There exists a Month 
with Monthnumber 
<1>."

Month

7 6

F4 : "There exists a Period with <6> 
and <7>."

Period

1598 1599

F793 : "<1598> has EurIcaInd <1599>."

LineGroup_EurIcaInd-toek

106 107

F59 : "<106> has LineGroupname 
<107>."

Line Groupname -toe k

895 896
DiscountCommission

F445 : "The Budget for <895> has a 
DiscComm_Amount of functional 
currency <896>."

LnGrp_Bdgt_DiscC omm_Amount-toek

893 894
Gross_Turnover

F444 : "The Budget for <893> has a 
Gross_Turnover of functional 
currency <894>."

LnGrp_Bdgt_Gross_Turnover-toek

897 898
Nett2_Turnover

F446 : "The Budget for <897> has a 
Nett2_Turnover of functional 
currency <898>."

LnGrp_Bdgt_Ne tt2_Turnove r-toe k

891 892

F443 : "The Budget for <891> is <892> 
PAX_kms."

LnGrp_Bdgt_PAX_kms-toe k
887 888

F442 : "The Budget for <887> is <888> 
Seatkms."

LnGrp_Bdgt_Seatkms-toe k

909 910
DiscountCommission

F451 : "The Forecast for <909> has a 
DiscComm_Amount of functional 
currency <910>."

LnGrp_Frcst_DiscComm_Amount-toe k

905 906
Gross_Turnover

F449 : "The Forecast for <905> has a 
Gross_Turnover of functional 
currency <906>."

LnGrp_Frcst_Gross_Turnover-toek

907 908
N et t2_Turnover

F450 : "The Forecast for <907> has a 
Nett2_Turnover of functional 
currency <908>."

LnGrp_Frcst_Nett2_Turnove r-toe k

903 904

F448 : "The Forecast for <903> is 
<904> PAX_kms."

LnGrp_Frcst_PAX_kms-toe k
899 900

F447 : "The Forecast for <899> is 
<900> Seatkms."

LnGrp_Frcst_Seatkms-toek

8
C alendar__

F435 : "There exists a 
Calendar_Year <8>."

Calendar_Ye ar

17 16

F8 : "<16> belongs to <17>."

Period_Bookyear_Q uarter-toek *

15 14

F7 : "<14> belongs to <15> ."

Pe riod_Q uarter-toek

4 5

F3 : "<4> has Bookmonthnumber 
<5>."

Month_Bookmonthnumbe r-toe k

2 3

F2 : "<2> has Monthname <3>."

Monthname -toe k

12 11

F6 : "There exists a 
Bookyear_Quarter with 
Bookyear_Quarternumber <11> 
and <12>."

Bookyear_Q uarte r

13

F434 : "There exists a 
Book_Year <13>."

Book_Year

Bookye ar_Q uarternumber

9 10
Quarter__

F5 : "There exists a Quarter with 
Quarternumber <9> and <10>."

Q uarter



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   10 

In the Normalized Model diagram of figure 13 the entity types LineGroup_Forecast, Period, LineGroup_Budget, Month 
and LineGroup are present. Because this Normalized datawarehouse Model is still in its conceptual shape, the fact 
expressions can still be retrieved for validation purposes. To go into the logical / physical level (towards 
implementation) the ER Bridge module of the FCO-IM Bridge tool can generate an ERD that can be imported in 
ERwin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: The Normalized Forecast Sub-Model of the KLM Passage Model in conceptual form 
 
The next step is the conversion of the Normalized Model towards a Dimensional Model. For this purpose, the 
StarBridge module of the FCO-IM Bridge tool is used. It helps the analyst by proposing options (candidate fact tables 
and dimensions, providing conformity by splitting off a mini dimension or by introducing an aggregate dimension and 
so on) and it will automatically apply any decision that the analyst makes. It even helps by proposing proper decisions. 
In this example, the StarBridge algorithm would suggest that LineGroup_Forecast is a fact table and Period and 
LineGroup_Budget are dimensions. Month and LineGroup are snowflake dimensions, which the analyst can decide to 
denormalize later into respectively Period and LineGroup_Budget. In this case, the analyst by looking into the soft-
semantics (fact expressions) associated to the facts that are grouped into entity types, realizes that LineGroup_Budget 
must be a fact table, too. After this decision, the LineGroup is a dimension. The tree diagram would then be as shown in 
left side of figure 14. 
 
 
 
 
 
 
 
 
 
 

Figure 14: Trees of the Normalized Forecast Sub-Model before and after denormalizing 
 
Only Month will be denormalized into Period. The definitive model has 2 fact tables with 2 conformal dimensions. See 
figure 15 right side. This model is stored in the extended FCO-IM Repository as a conceptual Dimensional Model. 
From this model the initial fact expressions can still be generated automatically for validation purposes. 
 
The next step is towards a logical / physical Dimensional Model. For this purpose the ER Bridge module of the FCO-
IM Bridge tool helps again, and the resulting logical Dimensional Model is imported into the ER tool ERwin. By 
exporting the Dimensional Model to an ER tool, the analyst benefits from the features these tools offer for the further 
implementation phase of the datawarehouse. 

105 107 1599

F58  : "There exists a LineGroup with 
LineGroupcode <105>."

F59  : "LineGroup <105> has LineGroupname 
<107>."

F793 : "LineGroup <105> has EurIcaInd <1599>."

LineGroup

889890
Made_for__

892 894
Gross_Turnov er

896
DiscountCommission

898
Nett2_Turnov er

888

F442 : "The Budget f or <889> and <890> is <888> Seatkms."
F443 : "The Budget f or <889> and <890> is <892> PAX_kms."
F444 : "The Budget f or <889> and <890> has a Gross_Turnov er of  f unctional currency  

<894>."
F445 : "The Budget f or <889> and <890> has a DiscComm_Amount of  f unctional 

currency  <896>."
F446 : "The Budget f or <889> and <890> has a Nett2_Turnov er of  f unctional currency  

<898>."
F503 : "A Budget is made f or <889> and <890>."

LineGroup_Budget

LineGroupcode

902
Made_in__

901 904 906
Gross_Turnov er

908
Nett2_Turnov er

910
DiscountCommission

900

F447 : "The Forecast f or <901> made in <902> is <900> Seatkms."
F448 : "The Forecast f or <901> made in <902> is <904> PAX_kms."
F449 : "The Forecast f or <901> made in <902> has a Gross_Turnov er of  f unctional 

currency  <906>."
F450 : "The Forecast f or <901> made in <902> has a Nett2_Turnov er of  f unctional 

currency  <908>."
F451 : "The Forecast f or <901> made in <902> has a DiscComm_Amount of  f unctional 

currency  <910>."
F504 : "A Forecast is made in <902> f or <901>."

p
LineGroup_Forecast

6 7
Calendar__

15.2
Quarter_Calendar__

15.1 17.1 17.2

F4  : "There exists a Period with <6> and Calendar_Y ear <7>."
F7  : "Period (<6>, <7>) belongs to Quarter (<15.1>, <15.2>) ."
*F8 : "Period (<6>, <7>) belongs to Booky ear_Quarter (<17.1>, <17.2>)."

Period
AmountNumber_of_PAX_kms

LineGroupname

EUR_ICAcode

Number_of_S eatkms

Bookyear

Bookyear_Quarternumber

1 5 3

F1  : "There exists a Month with Monthnumber 
<1>."

F2  : "Month <1> has Monthname <3>."
*F3 : "Month <1> has Bookmonthnumber <5>."

Month

Quarternumber
Year

Bookmonthnumber

Monthname
Monthnumber



Elton Manoku, Guido Bakema     Integrated Toolsupport for Datawarehouse Design 
 

© HAN University of Applied Sciences, The Netherlands   11 

In FCO-IM Bridge the soft semantics are first transported from the extended FCO-IM Repository into the intermediate 
ER Repository and then exported to the chosen ER tool as entity types or attribute names and comments, relationship 
names and role descriptions. So, the soft semantics are not lost, but are still part of the model, but no longer in a 
structured shape. The Dimensinal Model in ER notation now looks as shown in figure 15. It shows two related stars 
with conformal dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Entity-Relationship diagram showing two related stars with conformal dimensions 
 
 
 
References 
 
[1] G.P. Bakema, J.P.C. Zwart, H. van der Lek, Fully Communication Oriented NIAM, NIAM-ISDM 1994 

Conference, Working Papers, pages L1-L35, Albuquerque, New Mexico (1994), www.FCO-IM.com 
[2] Guido Bakema, Jan Pieter Zwart, Harm van der Lek, Volledig Communicatiegeoriënteerde 

Informatiemodellering, tenHagenStam, 1996 
[3] G.M. Nijssen, T.A. Halpin, Conceptual Schema and Relational Database Design: a fact oriented approach, 

Prentice-Hall, 1989 
[4] FCO-IM Casetool, Ascaris Software & FCO-IM Consultancy, 1996/1997, www.FCO-IM.com 
[5] CaseTalk, Bommeljé Crompvoets and partners, 2002, www.CaseTalk.com 
[6] Peter Alons, Single point of definition voor metadata, Database Magazine, Dec 2000,www.FCO-IM.com 
[7] Peter Alons, Beter modelleren begint op conceptueel niveau, Database Magazine, Feb 2000,www.FCO-

IM.com 
[8] Ralph Kimball, The Data warehouse Toolkit, John Wiley & sons, 1996 
[9] Harm van der Lek, Op jacht naar de sterrren, Database Magazine, April 2000 
[10] Jorg Janssens, Egi Rodriguez, Extensions of FCO-IM, HAN University masters thesis, Aug 1999 
[11] Rob Arntz, Algorithmische transformatie van Conceptuele Modellen naar Stermodellen, HAN University / 

Nijmegen university masters thesis, Aug 2000 
[12] Harm van der Lek, Overdekkende Bos Stelling, Database Magazine, Feb 2000 

LineGroup_Budget_LineGroupLineGroup_Forecast_LineGroup

LineGroup_Forecast_in_Period

LineGroup_Forecast_per_Period
LineGroup_Budget_Period

LineGroup_Budget

Number_of_Seatkms
Number_of_PAX_kms
Gross_Turnover
DiscountCommission
Nett2_Turnover

<M>
<M>
<M>
<M>
<M>

LineGroup_Forecast

Number_of_Seatkms
Number_of_PAX_kms
Gross_Turnover
Nett2_Turnover
DiscountCommission

<M>
<M>
<M>
<M>
<M>

LineGroup

LineGroup_KEYID
LineGroupcode
LineGroupname
EUR_ICAcode571

<pi> <M>
<M>
<M>
<M>

Period

Period_KEYID
Calendar__Calendar_Year
Quarternumber
Quarter_Calendar__Calendar_Year
Bookyear_Quarternumber
Monthnumber
Bookmonthnumber
Monthname
Book_Year

<pi> <M>
<M>
<M>
<M>
<M>
<M>
<M>
<M>
<M>


