
FCO-IM and UMLFCO-IM and UML
Investigation on the transformation of Investigation on the transformation of

an elementary information grammar an elementary information grammar
towards towards

a class diagrama class diagram

Elton ManokuElton Manoku
HAN University HAN University
Arnhem, 2002Arnhem, 2002

UML - Class Diagrams and FCO-IM - 2 -

1 Introduction__3

2 UML & Class Diagrams__4

2.1 Essential part of a class diagram_______________________________________4

2.2 The advanced part of class diagrams___________________________________5

2.3 Additional notations___6

3 The transformation of FCO-IM grammar diagram towards a class diagram__6

3.1 (Partly) grouping and reducing the EI-IGD_____________________________7

3.2 Retrieving classes___8

3.3 Retrieving attributes__9

3.4 Retrieving associations__11
3.4.1 Associations coming from non-lexical roles___________________________________11
3.4.2 Associations coming from binary fact types___________________________________12
3.4.3 Another option for associations__13

3.5 Retrieving generalizations___13

3.6 Retrieving domains___14

3.7 Retrieving identifiers___15

3.8 Retrieving operations___15

3.9 Retrieving other constraints___15

4 Implementation of the prototype_____________________________________17

4.1 Implementation platform__17

4.2 Destination platform___17

4.3 The structure of the tool__17

4.4 FCO-IM Case Tool Generic Repository________________________________18

4.5 Internal Tool Repository__18

4.6 Query transformation from FCO-IM exported Repository towards Internal
Tool Repository__18

4.7 Query transformation from Internal Tool Repository and generation of VB
Script for Power Designer 9__18

4.8 Display module__18

5 Bibliography___18

UML - Class Diagrams and FCO-IM - 3 -

1 Introduction

The aim of this material is to put a starting step in building a bridge between
FCO-IM Diagrams and Object Oriented Modeling Diagrams. FCO-IM is
powerful method to perform data analysis in conceptual layer. For displaying
the designed data model in Entity Relationship Diagrams or ERD is already an
algorithm. Even though many semantics are lost during this transformation,
again displaying the result of analysis in ERD is wise because it is better
known between data modelers and database designers around. Several tools
are present where this algorithm is implemented.
Unified Programming Language or UML is gaining popularity nowadays and is
becoming a standard in Object Oriented Modeling. UML is a composition of
different diagrams: Activity Diagrams, Class Diagrams, Sequence Diagrams,
State Diagrams, Use Case Diagrams.
These diagrams are used for different purposes. Mainly UML diagrams are
used for software design and different kind of diagrams cover design issues in
software development. For displaying data models in UML are used Class
Diagrams. For this reason only this kind of diagram will be treated in this
report. There are different tools, which are supporting UML.
One tool which make it possible to display class diagrams and after that
converting those class diagrams in different platforms like Java, C++, XML-
DTD, etc is Sybase Power Designer 9.
In this material, this tool has been seen as a proper one for displaying Class
Diagrams converted from FCO-IM diagrams, because it seems to fully support
UML syntax and gives the opportunity to access the repository of this tool
through scripts or directly.
It will be treated in this material step by step an idea about the transformation
FCO-IM Diagrams towards Class Diagrams.
In each step will be used student case example, extended with some more
facts to include every possible situation like subtype-super type relationships.
Because the Class Diagram is not seen from a data treatment perspective,
UML notation is extended with additional symbols to present better the Model
in FCO-IM Diagram.
Because FCO-IM Case Tool that supports FCO-IM method has a generic
repository and it is possible to access it, all needed queries to support this
transformation will be given.
It will be explained the implementation of a tool supporting the transformation
described below.

UML - Class Diagrams and FCO-IM - 4 -

2 UML & Class Diagrams
UML is recently being used as a standard in software development to
represent analysis design and implementation design.
UML is a composition of different diagrams:
 Activity Diagrams
 Class Diagrams
 Sequence Diagrams
 State Diagrams
 Use Case Diagrams

For displaying the static structure of an object oriented model UML uses class
diagrams. Because of the importance of the static structure, class diagrams
have more attention in the object-oriented analysis and are most in use.
Because data structure are the static part of a model in this material will be
treated only the class diagrams. According to a division of class diagram
concepts [See the bibliography 1], there are:
 Essential part of a class diagram
 Advanced part

In essential part is used 90% in class diagrams and the rest 10%. I would like
to use the same division, because in the transformation is used more the
terminology of the first part and rarely of the second part.

2.1 Essential part of a class diagram
The notation used in essential part cover the main structure of the class
diagram. This includes classes and relationships between them. Let’s have a
simple example to identify the elements of a class diagram

0..*1

Person

-
-
-

FirstName
LastName
person code

: String
: String
: String

+
+

GetFirstName ()
GetLastName ()

: String
: String

Student

-
-

GPA
sport

: numeric
: String[]

+ GetGPA () : numeric

Teacher

-
-

room
subject

: String
: String

class

Attribute

Operation

Generalization

Multiplicity

Association

Minimum
Cardinality

Maximum
Cardinality

Constraint

Navigability

GPA >3

UML - Class Diagrams and FCO-IM - 5 -

In the essential part of a class diagram as it is shown in picture are listed:
 Classes.

The main structures of a class diagram
In classes are shown also attributes and operations, which operate on
attributes.

 Associations
Associations are relationships between classes.
In each side of an association there is a multiplicity that shows the
minimum cardinality and maximum cardinality. There is also a symbol
called navigability, which shows if the reference will be part of the class in
the other side of association.
Depending on minimum and maximum cardinalities multiplicities can be
called:
Multiplicity: optional if minimum cardinality is 0
Multiplicity: multi value if maximum cardinality is *
A combination of both possibilities.

 Generalizations
Generalizations are special relationships between classes where

inheritance is involved.

 Constraints
Part of class diagrams are constraints that mostly are found as comments
related with the class where they are relevant by a line and by using the
spoken language.

2.2 The advanced part of class diagrams
The notation used in advanced part is used rarely. Often the use of this
notation is needed. The symbols and concepts used in this part are very large
and some of them have to do with the implementation part of the class.
Some of the notations used in this part are:

 Stereotypes
Stereotypes can be of classes, associations or generalizations. They are
called differently because they carry out more specific role than other
classes, associations or generalizations. They can be seen as classes,
associations or generalizations with special constraints on it.

 Classifications
Classifications have to do with generalizations. There are single
classifications and multiple classifications. It means an object can be of
one subtype or more than one.

 Aggregation and Composition
They are special kind of associations between classes.

UML - Class Diagrams and FCO-IM - 6 -

 Derived Associations and Attributes
 Association Classes

There are classes, which relates to a association. They are used when it is
needed to have an attribute for an association.

 Visibility
It is applied in attributes, associations, classes, etc. It has more to do with
the physical implementation of the class

For the transformation, which will be treated, the second set of notations is not
of very importance with some exceptions. Where it is used it will be explained.

2.3 Additional notations
What was mentioned above is part of UML notation. For having less lose of
information from the FCO-IM grammar, the above-mentioned notation is
extended with some more notations. These notations are needed to cover
essential parts of the data model, which mostly are not of much importance in
Object Oriented Modeling and can be covered by different constraints.
Because in data modeling they are a lot in use, the notation of data model is
imported here. These are:
 Domains
 Identifiers
 These are supported from the tool Power Designer 9.

3 The transformation of FCO-IM grammar diagram
towards a class diagram

It will be shown in this part a possible way to transform an elementary
information grammar diagram or El-IGD towards a class diagram. There are
several steps, which cover this transformation. To understand better the
transformation and choices made, an example will be used to illustrate it. The
example is about the student case extended with some other fact types. I
extended to have more cases involved in the transformation. It can be the
case this example is not consistent with the reality, but for our case is good
enough.

UML - Class Diagrams and FCO-IM - 7 -

The transformation consists in 2 parts:
 Transformation within FCOIM Case Tool. Step 3.1
 Transformation of the result from FCOIM Case Tool to class diagram.

Steps 3.2 until end.

3.1 (Partly) grouping and reducing the EI-IGD
This step is done within case tool and is a normal grouping and reducing
process leaving out the lexicalizing (see the note in the end of paragraph). In
this stage of the diagram we can identify classes and relationships between
them. After this step the above EI-IGD will look like:

Fact type expressions, Object type expressions are removed from the
Grouped and reduced Information Grammar Diagram or GR-IGD. Let’s

2

7

14

person code

project code

6 10 8

Project

4

descriptionordinal number

{ f irst, second, third }
1

3 28
OP

Teacher
2

14 15

Allocation

9
10

11
Student _

12 13

Preference

7
8

name

24 23

StudentSport
19

sport
subject

25 26

Teaching

26
25

G PA

room

30 18 5
Mentor

Student

15

country namesocsecno

pasno 37 38

International
31 p

35 39

Domestic

29
32 p

17 20
Fi rs tName

22
Las tName

32

Person

14
18

O3

O3

O2

O5

O5

O5

10

O2

O2

O4:F14, O2
O6:F14, F13, O2

O4:F15, F2, O5
O6:F15, F2, O5, F12

O7

O7

2

u 18

7

14

person code

project code

6
F3 : "The school is

offering projec t <6>."
O3 : 'project <6>'

4

Project
7 8

F4 : "<7> is superv ised by <8>."

5
Supervision

description9 10
F5 : "<9> concerns <10>."

6
Project Description

ordinal number

{ first, second, third }
1

3
F13 : "There is a teacher

with <3>."
O2 : '<3>'

2

Teacher

17
O4 : '<17>'
O6 : 'code <17>'
O7 : 'person w ith code

<17>'

14

Person

14 15
F7 : "<14> was allocated <15>."

9
10

Allocation

4 5
M entor

F2 : "The mentor of <4> is <5>."

3
Mentorship

11
Student _

12 13
F6 : "The <12> preference of <11> is <13>."

7
8

Preference

19 20
Firs tNam e

F8 : "Firs t name of person with <19>
is <20>."

16
First Name

name

21 22
Las tNam e

F9 : "Las t name of person with <21>
is <22>."

17
Last Name

24 23
F10 : "Student with <23> is exerc is ing

<24>."

19
StudentSport

sport

subject25 26
F11 : "Teacher w ith <25> is teaching

<26>."

26
25

Teaching

GPA

room

30 29
F15 : "Student with <29> has GPA

<30>."

22
Student G PA *

27 28
F14 : "Teacher with <27> has room

<28>."

21
Teacher Room

18
F12 : "There is a s tudent

w ith <18>."
O5 : '<18>'

15

Student

33
O8 : '<33>'

33

country

country name
31 32

F16 : "<31> is born in <32>."

27
PersonBirthPlace

socsecno

pasno 37 36
F18 : "<36> has passport number

<37>."

30
PersonPasportNo

38
O9 : '<38>'

31

International

34 35
F17 : "<34> has soc ial security

number <35>."

28
29

PersonSocsecNo

39
O10 : '<39>'

32

Domestic

O3

3

O3
4

O2

O4:O2
O6:F13, O2

O3

O2

O3

O6
5

O6

6

O2

O2

O5

O5
1

O5

O5

10

O5

9

O4, O6:O5
O6 :F12

O7

11

O8
15

O9
13

O7

O1012

O7

UML - Class Diagrams and FCO-IM - 8 -

explain something about this GR-IGD so it can be more clear later why I made
some choices in producing this GR-IGD.
Firstly I didn’t group away every role that would be grouped away using the
default settings. I am talking about “Teaching” fact type. I made this choice
because can be the case that we don’t have the default situation always. Also
the “Allocation” fact type is not reduced to have again the symmetry present
between “student” and “project”.
In Object Oriented Modeling this symmetry will not produce any redundant
information like it is the case in Entity Relationship Modeling.
Fact type “Domestic” and “International” are not reduced because they are
subtypes of fact type “Person”.

Note: The transformation that will come in next steps works out also if we use
the elementary EI-IGD without grouping at all, but in that case it is needed to
reduce some of the lexical object types present that really are not needed by
using the reduce step by step. This manual step is needed to have less
classes in the final result. The result will be the same with some changes in
names of some associations. If the EI-IGD is used as a source for the
transformation then less loss of information is exported in class diagram. I
could mention here the derived fact types, which can be identified in EI-IGD,
but are lost in GR-IGD. Also some constraints derived by Totality Constraints
can be lost after grouping & reducing.

3.2 Retrieving classes
Every fact type that fulfills the below conditions will become a class in the
class diagram. Each class get the name of the fact type is coming from. And
visibility is PUBLIC.
Conditions are:
 It is a non-lexical object type

Example: From the example fact types, which will become classes are:
Person, Project, Student, Teacher.

Or
 Non binary fact type

Example: From the example fact types, which will become classes are:
Preference.

UML - Class Diagrams and FCO-IM - 9 -

If we compare with entities generated in the transformation towards ERD, we
see that binary fact types, which have at least one lexical role don’t become
class. This is because an attribute in class diagrams can have more than an
atomic value. We will see in “Retrieving attributes” how these fact types will
take part in transformation in the second type of attributes.

3.3 Retrieving attributes
Every lexical object type becomes an attribute. An attribute will get the name
of the object type that played the role, which is played by lexical object type
combined with fixes if they exist for the role. Visibility of the attributes is
“PRIVATE” if we suppose to access them through operations.
There are two kinds of attributes:
 First type of attributes: Attributes coming from lexical object types that play

roles that are part of fact types already become classes. These attributes
have multiplicity
- 0..1 if they play an optional role
- 1 if they play a non optional role
These attributes will be member of classes coming from fact types where
are found roles played by these lexical object types.
Example: Below is the table with the class and the attributes generated:

Class Name Attribute Name Domain Multiplicity
Person FirstName name 1
Person LastName name 1
Person Country country 1
Person Person code person code 1
Preference Ordinal number ordinal 1
Project Description description 1
Project Project code project code 1
Student GPA GPA 1
Teacher Room room 0..1

Preference

Person

Project

Student
Teacher

UML - Class Diagrams and FCO-IM - 10 -

In this table are present Domains. They will be treated later. Domain is one of
the notations that is not part of UML, but is imported to simplify the use of data
type from the ER Modeling.

 Second type of attributes: Attributes coming from lexical object types that
play roles on fact types, which couldn’t become classes. These fact types
are binary and have one lexical role and the other non-lexical. These
attributes have multiplicity composed by their minimum and maximum
cardinality:
- If the role which is played by the lexical object type has a single role

totality constraint than minimum cardinality is 1, else is 0
- If the role which is played by the lexical object type has a single role

unicity constraint than maximum cardinality is 1, else is *
- If binary fact type is derived, attribute is marked as derived
- If there is a totality constraint covering more than one role of non-lexical

roles, and those roles are played by the same object type, a check
operation (constraint) is generated as well forcing the existence of at
least one non null value between attributes generated where these
roles are involved. If roles are subtype role then exclusion constraint
between them is involved as well. Operation name <check> + ‘_’ +
<Totality constraint> with parameters all attributes generated that are
involved in Totality Constraint. Return value of operation is boolean.

These attributes will be members of classes coming from lexical object
types, which plays non-lexical role of the binary fact types.

Example: Below is the table with the class and the attributes generated:

Class Name Attribute
Name

Domain Minimum
Card

Maximum
Card

derived

Person pasno pasno 0 1 No
Person socsecno socsecno 0 1 No
Student sport sport 1 * No
Teacher subject subject 0 1 No

UML - Class Diagrams and FCO-IM - 11 -

3.4 Retrieving associations
There are 2 kind of associations which are retrieved.

3.4.1 Associations coming from non-lexical roles

First kind of association is coming from any non-lexical role of fact type which
are become classes. Another way of saying this is: associations coming from
non-lexical roles fact type which are not binary with a non-lexical role. This
association will be between the class coming from the fact type where the role
is and class coming from the fact type the role is played by.
The name of these kind of associations will be:
<fact type name where the role is> + ‘_’ + <Fact type which plays the role> +
‘_’ + <role number>.

3.4.1.1 The association side in the side of the class coming from the fact
type where the role is has these properties:

 Multiplicity is combination of minimum and maximum cardinality:
- Minimum cardinality is 1 if the role is a single role totality constraint,

else is 0
- Maximum cardinality is 1 if the role is under a single role unicity

constraint, else is *
 Navigability is No
 Visibility is ‘PUBLIC’
 Role. It can be some short description about this relationship

Preference

- ordinal number : string

Person

-
-
-
-
-
-

country
FirstName
LastName
pasno
person code
socsecno

: string
: string
: string
: long
: string
: long

- Check_14 (long pasno, long socsecno) : boolean

Project

-
-

description
project code

: string
: string

Student

-
-

GPA
sport

: float
: string[]

Teacher

-
-

room
subject

: string
: string

UML - Class Diagrams and FCO-IM - 12 -

3.4.1.2 The association side in the side of the class coming from the fact
type which plays the role has these properties:

 Multiplicity 0..1 if the role is optional, else is 1..1
 Navigability is Yes
 Visibility is ‘PUBLIC’
 Role. Better not to have role in both sides
Example: Below is the table with associations of the first kind for the student
case:

Association Name Class Name1 Navigabi
lity1

multipl
icity1

Class
Name2

Navigabi
lity2

multipl
icity2

Preference_Project_13 Preference No 0..* Project Yes 1..1
Preference_Student_11 Preference No 0..* Student Yes 1 1
Project_Teacher_8 Project No 0..* Teacher Yes 1 1

Student_Teacher_5 Student No 0..* Teacher Yes 1 1

3.4.2 Associations coming from binary fact types

These associations are coming from binary fact types with both roles non-
lexicalized.
Both sides are treated in the same way.
 Multiplicity is combination of minimum and maximum cardinality:

- Minimum cardinality in the side of the entity type coming from the non-
lexical object type which plays the role is 1 if there is a single role TC
on the other role, else 0

- Maximum cardinality in the side of the entity type coming from the non-
lexical object type which plays the role is 1 if there is a single role UC
on the other role, else n

 Navigability is Yes. In this way the symetry is still present
 Visibility is ‘PUBLIC’
 Role. It can be some short description about this relationship in of the

sides.
Example: Below is the table with associations of the first kind for the student
case:

Association Name Class Name1 Navigabi
lity1

multipl
icity1

Class
Name2

Navigabi
lity2

multipl
icity2

Allocation Student Yes 0..1 Project Yes 0..1

UML - Class Diagrams and FCO-IM - 13 -

There are some additional properties of the associations.
One of them is aggregation or composition. It can be assigned to association
side if the semantics are consulted in the diagram. If there are some fact
expressions like is composed or has than perhaps that association has an
aggregation into that.

3.4.3 Another option for associations

The second type of associations the definition can be more general and to say
every fact type which more than one non-lexical role must be an association
between lexical object types playing those roles. From these fact type are
generated also classes of the second type (see in retrieving classes-Non
binary fact type). In this case the generated class would be an associations
class for the generated association.
Note: In the tool is not implemented this kind of association. In Power
Designer associations can have only two sides and by the definition above
associations can have more than 2 sides. In Internal Repository tool both kind
of associations can be supported.

3.5 Retrieving generalizations
Generalizations are a special kind of relationship between classes. In FCOIM
they are called subtypes or better to say super types. These notations are
also present in UML with the same name a meaning. So part of a
generalization relationship are subtypes and super types. Generalizations are
retrieved by subtypes in GR-IGD. A generalization has a super type the super
type in GR-IGD and as subtype the subtypes. More than one generalization
can be present for a super type. If roles played by a super type are involved in
the same totality constraint than they are part of the same generalization. If no

0..1

0..1

0..*

1

0..*

1

0..*
1

0..*

1

Preference

- ordinal number : string

Person

-
-
-
-
-
-

country
FirstName
LastName
pasno
person code
socsecno

: string
: string
: string
: long
: string
: long

- Check_14 (long pasno, long socsecno) : boolean

Project

-
-

description
project code

: string
: string

Student

-
-

GPA
sport

: float
: string[]

Teacher

-
-

room
subject

: string
: string

UML - Class Diagrams and FCO-IM - 14 -

totality constraint is present than there is only one generalization. The
generalizations coming from the GR-IGD are by default complete and
exclusive because they are derived or declarative.
The name of a generalization is <fact type which acts as a super type class>
+ ‘_’ + <if exists totality constraint number>

Example: Below is the table with generalizations of the student case:
Generalization Parent Child
Person_7 Person Teacher
Person_7 Person Student

3.6 Retrieving domains
The notation ‘Domains’ is not part of UML notation, but is imported by ERM. It
introduced in class diagram because it can better manage some constraints in
domain level.
In this transformation domains are retrieved by lexical object types. Also are
every fact type which was become a class will be a domain. This is to simplify
the use of data types. In the list of domain are included special domains ‘void’,
‘boolean’, which are not present at all in GR-IGD, but are really needed in
Object Oriented Modeling.
Domains get the name of the lexical object type they come from.
Example: Below is the table with domains of the student case:

Name Type Length Scale
Void Void
Boolean Boolean
Subject String 3 0
Sport String 4 0
Room String 4 0
Project code String 4 0
Person code String 3 0
Ordinal String 6 0

0..1

0..1

0..*

1

0..*

1

0..*
1

0..*

1

Preference

- ordinal number : string

Person

-
-
-
-
-
-

country
FirstName
LastName
pasno
person code
socsecno

: string
: string
: string
: long
: string
: long

- Check_14 (long pasno, long socsecno) : boolean

Project

-
-

description
project code

: string
: string

Student

-
-

GPA
sport

: float
: string[]

Teacher

-
-

room
subject

: string
: string

UML - Class Diagrams and FCO-IM - 15 -

Name String 6 0
Description String 44 0
Country String 15 0
Socsecno Long 6 0
Pasno Long 7 0
GPA Float 2 1
Teacher CLASS
Student CLASS
Project CLASS
Person CLASS
International CLASS
Domestic CLASS
Preference CLASS

3.7 Retrieving identifiers
Identifier is the second notation introduced in UML that is not part of it. This is
important for data models, but in Object Oriented not really. Important
constraints are covered using this notation. This is the reason why is
introduced also here.
An identifier is a class attribute or an association side where the class is
involved, or a combination of class attributes and association sides where the
class is involved, whose values uniquely identify each occurrence of the class.
Each class can have many identifiers. Among identifiers, the primary identifier
is the main identifier of the class. As you can find out by yourself now
identifiers are retrieved by Unicity Constraints.
Identifier will become every Unicity Constraint that cover roles which are
played by lexical object types or by roles involved in associations of the first
kind.
Note1: In Power Designer only identifiers where only attributes are involved
are present. Association sides cannot be present in an identifier. So the
Unicity Constraints over the roles, which are involved in any association will
be lost.
Note 2: In generated VB Script Identifiers are not included. They are present
in Internal Tool Repository.

3.8 Retrieving operations
For every attribute and association side are generated 2 operations for getting
and setting the value of them.

3.9 Retrieving other constraints
Using domains and identifiers helps to define the main constraints present in
GR-IGD. For other constraints like subset constraint, cardinality constraint,
exclusive constraint a constraint can be written down with a line related to the
class where this constraint is applied.

The final class diagram is:

UML - Class Diagrams and FCO-IM - 16 -

0..1

0..1

0..*
10..*

1 0..*

1

0..*

1

Preference

- ordinal number : string

+
+
+
+
+
+

Getordinal number ()
GetPreference_Project_13_Project ()
GetPreference_Student_11_Student ()
Setordinal number (string Newordinal number)
SetPreference_Project_13_Project (Project NewPreference_Project_13)
SetPreference_Student_11_Student (Student NewPreference_Student_11)

: string
: Project
: Student
: void
: void
: void

Person

-
-
-
-
-
-

country
FirstName
LastName
pasno
person code
socsecno

: string
: string
: string
: long
: string
: long

+
+
+
+
+
+
+
+
+
+
+
+
-

Getcountry ()
GetFirstName ()
GetLastName ()
Getpasno ()
Getperson code ()
Getsocsecno ()
SetFirstName (string NewFirstName)
SetLastName (string NewLastName)
Setcountry (string Newcountry)
Setperson code (string Newperson code)
Setpasno (long Newpasno)
Setsocsecno (long Newsocsecno)
Check_14 (long pasno, long socsecno)

: string
: string
: string
: long
: string
: long
: void
: void
: void
: void
: void
: void
: boolean

Project

-
-

description
project code

: string
: string

+
+
+
+
+
+
+
+

Getdescription ()
Getproject code ()
GetAllocation_Student ()
GetProject_Teacher_8_Teacher ()
Setdescription (string Newdescription)
Setproject code (string Newproject code)
SetProject_Teacher_8_Teacher (Teacher NewProject_Teacher_8)
SetAllocation_Student (Student NewAllocation)

: string
: string
: Student
: Teacher
: void
: void
: void
: void

Student

-
-

GPA
sport

: float
: string[]

+
+
+
+
+
+
+
+

GetGPA ()
Getsport ()
GetAllocation_Project ()
GetStudent_Teacher_5_Teacher ()
SetGPA (float NewGPA)
Setsport (string Newsport)
SetStudent_Teacher_5_Teacher (Teacher NewStudent_Teacher_5)
SetAllocation_Project (Project NewAllocation)

: float
: string
: Project
: Teacher
: void
: void
: void
: void

Teacher

-
-

room
subject

: string
: string

+
+
+
+

Getroom ()
Getsubject ()
Setroom (string Newroom)
Setsubject (string Newsubject)

: string
: string
: void
: void

UML - Class Diagrams and FCO-IM - 17 -

4 Implementation of the prototype
FCO-IM Case Tool offers the opportunity to export the repository in dBase
relation format. Using this great opportunity is it possible to access the EI-IGD
or GR-IGD in a nice way. Based on this repository and in the transformation
above, a prototype, which supports this transformation is present.

4.1 Implementation platform
The tool is implemented in MS Access 97. The reason is because it offers in
the same time an environment for operating with relational databases (in this
case with dBase format) and a fast interface builder, which makes it a good
tool for prototypes. Also the size of the database in use is relatively small in
structure and possible population.

4.2 Destination platform
As a destination platform to showing the final result coming from the tool is
chosen Power Designer 9. This version of Power Designer supports both Data
Oriented Models and Object Oriented Models. There are also possible the
conversion from data model to class diagrams within Power Designer, but I
don’t know if it is reliable. There is also a repository where can be stored
every kind of model produced with Power Designer. This version is using XML
technology for the storage of their documents. It offers also the opportunity to
run VB Scripts. Using this script it is easy to create models of different
diagrams including here class diagrams. This last mentioned feature is used
for producing the final diagram in Power Designer. Using Power Designer it is
possible the creation of classes in different platforms like C++, Java, different
XML dialects, etc. by class diagrams. Beside this it offers also the necessary
documentation to operate with all these features.

4.3 The structure of the tool
Looking at the picture below you can a have a better picture how the tool
operate.

Query transformation where the
transformation explained is
implemented

FCO-IM Case Tool
Generic Repository

Internal Tool UML
Repository

Class
Diagrams

Power Designer 9

Query transformation & generation
of a VB Script which creates the
model in Power Designer

UML - Class Diagrams and FCO-IM - 18 -

4.4 FCO-IM Case Tool Generic Repository
For accessing the repository of FCO-IM grammar diagram, FCO-IM Case Tool
offers a module for exporting that repository in dBase IV format. That makes
possible to use against this repository SQL.
Rules defined in transformation above can be easly expressed with SQL.

4.5 Internal Tool Repository
Within the tool there is a database where the information about the meta data
of the UML model is stored. This repository stores the basics of a class
diagram and some of the advanced elements.
The analysis for this model were performed with FCO-IM Case Tool. The
reason was good documentation while doing analysis and building the model.
This repository was needed, because:
 it was more clear what is needed after the data model was built
 it is a static source of data for transforming the data towards a platform like

Power Designer 9
 it would be easier for future transformation towards other platforms
 bugs can be identified more easily
 the result after transformation can be consulted more easily

The data model is found in appendix 1.

4.6 Query transformation from FCO-IM exported Repository
towards Internal Tool Repository

All rules explained in the transformation for retrieving classes, attributes, classes, attributes,
associations, domains & value constraints, generalizations, identifiers, associations, domains & value constraints, generalizations, identifiers,
operations are implemented as views/queries in MS Access. operations are implemented as views/queries in MS Access.
After that with insert queries against these views/queries, data was pumped
from FCO-IM Repository to Internal Tool Repository.

For these rules applied using SQL you can check the appendix 2.

4.7 Query transformation from Internal Tool Repository and
generation of VB Script for Power Designer 9

These query transformation are queries/views against the Internal Tool
Repository. These queries/views are specific for the creation of VB Script for
Power Designer 9.

For these queries/views are see appendix 3.

UML - Class Diagrams and FCO-IM - 19 -

4.8 Display module
Within the tool there is a display module composed by a form and a module. It
is built to consult the UML class diagram stored in Internal Tool Repository.
For displaying the result list boxes are used.

5 Bibliography
 Modeling OO databases with FCO-IM
Report Chiel Boon
 UML Data Models from ORM Perspective
Papers by Dr. Terry Halpin
 FCO-IM and ERM
Paper by Guido Bakema
 UML Distilled
Fowler & Scott
 Applying UML and Patterns
Craig Larman

	FCO-IM and UML
	Investigation on the transformation of
	Elton Manoku
	1 Introduction
	2 UML & Class Diagrams
	2.1 Essential part of a class diagram
	2.2 The advanced part of class diagrams
	2.3 Additional notations

	3 The transformation of FCO-IM grammar diagram towards a class diagram
	3.1 (Partly) grouping and reducing the EI-IGD
	3.2 Retrieving classes

	Or
	3.3 Retrieving attributes
	3.4 Retrieving associations
	3.4.1 Associations coming from non-lexical roles
	3.4.1.1 The association side in the side of the class coming from the fact type where the role is has these properties:
	3.4.1.2 The association side in the side of the class coming from the fact type which plays the role has these properties:

	3.4.2 Associations coming from binary fact types
	3.4.3 Another option for associations

	3.5 Retrieving generalizations
	3.6 Retrieving domains
	3.7 Retrieving identifiers
	3.8 Retrieving operations
	3.9 Retrieving other constraints

	4 Implementation of the prototype
	4.1 Implementation platform
	4.2 Destination platform
	4.3 The structure of the tool
	4.4 FCO-IM Case Tool Generic Repository
	4.5 Internal Tool Repository

	The data model is found in appendix 1.
	4.6 Query transformation from FCO-IM exported Repository towards Internal Tool Repository
	4.7 Query transformation from Internal Tool Repository and generation of VB Script for Power Designer 9
	4.8 Display module

	5 Bibliography

